Garbage classification using convolutional neural networks (CNNs)

نویسندگان

چکیده

Proper garbage classification is essential for effective waste management and environmental sustainability. This research paper presents a comprehensive study of using Convolutional Neural Networks (CNNs). The objective to develop an accurate automated system leveraging the power deep learning. proposed CNN model achieves impressive accuracy 98.45%, demonstrating its efficacy in classifying different categories. encompasses data collection, preprocessing, architecture, training methodology, evaluation. results indicate potential CNNs revolutionizing practices paving way more sustainable future.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Food Image Recognition by Using Convolutional Neural Networks (CNNs)

Food image recognition is one of the promising applications of visual object recognition in computer vision. In this study, a small-scale dataset consisting of 5822 images of ten categories and a five-layer CNN was constructed to recognize these images. The bag-of-features (BoF) model coupled with support vector machine was first tested as comparison, resulting in an overall accuracy of 56%; wh...

متن کامل

Image Classification using Convolutional Neural Networks

The specific paper I’ve chosen is titled “ImageNet Classification with Deep Convolutional Neural Networks” [1]. ImageNet is an annual competition in image recognition where researchers in the field pit their models against each other to achieve the highest classification accuracy on the same set of images. The model put forward in this paper, named AlexNet from it’s main author, beat the second...

متن کامل

Acoustic Event Classification Using Convolutional Neural Networks

Acoustic scene classification (ASC) aims to distinguish between different acoustic environments and is a technology which can be used by smart devices for contextualization and personalization. Standard algorithms exploit hand-crafted features which are unlikely to offer the best potential for reliable classification. This paper reports the first application of convolutional neural networks (CN...

متن کامل

Medical Text Classification using Convolutional Neural Networks

We present an approach to automatically classify clinical text at a sentence level. We are using deep convolutional neural networks to represent complex features. We train the network on a dataset providing a broad categorization of health information. Through a detailed evaluation, we demonstrate that our method outperforms several approaches widely used in natural language processing tasks by...

متن کامل

Spectral classification using convolutional neural networks

There is a great need for accurate and autonomous spectral classification methods in astrophysics. This thesis is about training a convolutional neural network (ConvNet) to recognize an object class (quasar, star or galaxy) from one-dimension spectra only. Author developed several scripts and C programs for datasets preparation, preprocessing and postprocessing of the data. EBLearn library (dev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Material science & engineering international journal

سال: 2023

ISSN: ['2574-9927']

DOI: https://doi.org/10.15406/mseij.2023.07.00217